Research Profiles

The doctorate programme is initiated by a nucleus of four research groups in Munich:

Prof. Dr S. J. Glaser (chairman)
Quantum control, NMR
Dept. Chemistry Technical University of Munich (TUM)

Prof. Dr H. Weinfurter
Quantum communication
Section of Physics Ludwig Maximilians University of Munich (LMU)

Prof. Dr J. I. Cirac
Quantum information
Director of the Theory Group Max-Planck Institute of Quantum Optics (MPQ)

Prof. Dr G. Rempe
Experimental quantum dynamics
Director of the Quantum Dynamics Group Max-Planck Institute of Quantum Optics (MPQ)

The doctorate programme is in close exchange with the following research networks:

  • by DFG: solid-state-based quantum information (DFG initiative 631)

Profile of Prof. Dr S. J. Glaser's group

The research group is focussed on quantum control of spin systems (like NMR) and pseudo-spin systems (as charge and flux qubits in Josephson elements). Major achievements have been
  • the first 5-qubit quantum computer by tailored chemical synthesis,
  • the first scalable implementation of a Deusch-Jozsa algorithm on spin ensembles,
  • time-optimal and decoherence-minimising controls of spin systems,
  • a general gradient-flow-based algorithm for maximising quantum quality functions (e.g. for coherence transfer in ensemble spectroscopy).
See the following key papers:
  • S.J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W. Sørensen, and C. Griesinger, "Unitary Control in Quantum Ensembles: Maximising Signal Intensity in Coherent Spectroscopy" Science 280, 421 (1998).
  • R. Marx, A.F. Fahmy, J.M. Myers, W. Bermel, and S.J. Glaser, "Approaching Five-Bit NMR Quantum Computing", Phys. Rev. A 62, 012310 (2000).
  • N. Khaneja, R. Brockett, and S.J. Glaser, "Time-Optimal Control in Spin Systems", Phys. Rev. A 63, 032308 (2001).
  • N. Khaneja, B. Luy, and S.J. Glaser, "Boundary of Quantum Evolution under Decoherence", Proc. Natl. Acad. Sci. USA 100, 13162 (2003).
  • N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S.J. Glaser, "Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms" J. Magn. Reson. 172, 296 (2005).

Profile of Prof. Dr H. Weinfurter's group

The research group uses experience of fundamental quantum experiments for novel developments in the field of quantum communication and quantum information. Major achievements have been

  • the development of prototypes of quantum cryptography (designed to be close to series production),
  • multi-photon entanglement,
  • operations with linear optical quantum gates,
  • experimental multi-party quantum communication.

See the following key papers:

  • H. Weinfurter, "Experimental Bell-State Analysis" Europhys. Lett. 25, 559 (1994).
  • D. Bowmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental Quantum Teleportation", Nature 390, 576 (1997).
  • C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "A Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000).
  • C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P.M. Gorman, P.R. Tapster, and J.G. Rarity, "A Step towards Global Key Distribution", Nature 419, 450 (2002).
  • M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, "Experimental Observation of Four-Photon Entanglement for Parametric Down-Conversion" Phys. Rev. Lett. 90, 200403 (2003).

Profile of Prof. Dr J. I. Cirac's group

The research group develops physical models for quantum information processing and, more general, for quantum information theory. Major achievements have been

  • the first implementations of ion-trap quantum computing,
  • realisation of quantum communication systems;
  • significant contributions to the theory of entanglement
  • and the theory of quantum repeaters.
See the following key papers:
  • J.I. Cirac and P. Zoller, "Quantum computations with Cold Trapped Ions" Phys. Rev. Lett. 74, 4091 (1995).
  • S. van Enk, J.I. Cirac, and P. Zoller, "Photonic channels for Quantum Communication", Science 279, 205 (1998).
  • L.M. Duan, J.I. Cirac, and P. Zoller, "Geometric Manipulation of Trapped Ions for Quantum Computation", Science 292, 1695 (2001).
  • J.I. Cirac and P. Zoller, "A Scalable Quantum Computer with Ions in an Array of Microtraps", Nature 404, 579 (2000).
  • L.M. Duan, M. Lukin, J.I. Cirac, and P. Zoller, "Long-Distance Quantum Communication with Atomic Ensembles and Linear Optics" Nature 414, 413 (2001).

Profile of Prof. Dr G. Rempe's group

The group performs experimental research in the fields of Atom Optics, Bose-Einstein Condensation, Cavity Quantum Electrodynamics, and Dipolar Molecules, with applications in Quantum Information Science. Some recent achievements have been the
  • observation of single atoms in an optical cavity in realtime,
  • development of cavity cooling to trap single atoms in a cavity
  • observation of the vacuum-Rabi splitting of a bound atom-cavity system,
  • nano-positioning of single atoms in a micro-cavity,
  • deterministic generation of single photons with a reversible process,
  • observation of time-resolved interference of single photons,
  • association of molecules from an atomic Bose-Einstein, condensate,
  • guiding and trapping of slow dipolar molecules with electric fields.
See the following key papers:
  • P.W.H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, "Trapping an Atom with Single Photons" Nature 404, 365 (2000).
  • M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, "Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-finesse Optical Cavity", Phys. Rev. Lett. 85, 4872 (2000).
  • A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic Single-Photon Source for Distributed Quantum Networking", Phys. Rev. Lett. 89, 067901 (2002).
  • T. Legero, T. Wilk, M. Hennrich, G. Rempe, and A. Kuhn, "Quantum Beat of Two Single Photons" Phys. Rev. Lett. 93, 070503 (2004).
  • P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinske, and G. Rempe, "Cavity Cooling of Single Atoms", Nature 428, 50 (2004).
  • P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, and G. Rempe, "Normal-mode spectroscopy of a single bound atom-cavity system",Phys. Rev. Lett. 94, 033002 (2005).